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1. BACKGROUND AND INTRODUCTION

The initiation and propagagtion of macro-fractures in solid propellant

rocket motor grains is a frequent structural problem. Much exploratory

development effort has been conducted in attempting to obtain reliable pre-

dictive measures for solid propellant fracture with only limited success.

One factor involved in this situation is the inadequate understanding of

the physical processes which occur in propellants under stress prior to the

appearance of fracture surfaces. Research into propellant prefracture

behavior should provide a better understanding and foundation for future

development of fracture prediction methods.

A preliminary research in propellant prefracture behavior has been

conducted, during the past 23 months. Both theoretical and experimental

approaches have been carried out according to three phases of a program.

Phase I was primarily concerned with the development of a mathematical

model which would be applicable to a single prefracture configuration of

solid propellant under stress. The occurence of such a prefracture con-

figuration in polymeric systems is usually termed a craze. Concurrently

an experimental technique was to be developed for determining the displace-

ment and stress fields in the vicinity of a craze. During this phase some

specially prepared propellant polymers with and without amonium perchlorate

were tested.

In Phase II extension to highly filled propellant polymer samples was

to be added to the investigations. Phase III was to extend the studies to

massive crazing and craze-cractransitition and fracture propagation.

This report covers the attempts made and work done in Phase I. Since

the nature of this research is basic and complex, the efforts and develop-

ments are reported under separate headings as reflected in Section 2.

2. DEVELOPMENT AND APPLICATION OF THEORIES

* In order to develop an effective mathematical model for analyzing pre-

fracture behavior of solid propellants under stress, several approaches

have been considered. A two-dimensional formulation of a single craze in

5



propellant polymer, an improved double beam model for large deformations and

the time dependent behavior of craze propagation have all been attempted.

These together with the development of a laser speckle technique for dis-

placement measurement are reported separately in the following subsections.

2.1 Prefracture Analysis of 2D Craze in Propellant Polymers

2.1.1 Introduction - Under tensile stresses certain high polymers

deform from sites where stress concentrations are created and crazes develop.

The development of crazing in polymers is a prefracture phenomenon. The

mechanism of the development of a single craze is complex. After the

nucleation of a craze to the naked eye it appears like a crack. Thus the

analysis of a crack has been utilized to study the craze. Since there is

no material present within the crack, but a new phase of oriented polymeric

molecules fill in a craze which act as boundary stresses, any governing

formulations should at least include this feature for adequate analysis.

This report limits its scope to consider such an approa(h.

2.1.2 2D Craze Formulation - As shown in Figure 1, a two-dimensional

craze is considered to occur in an infinite sheet in a simple tension stress

field with magnitude a vertically in a rectangular coordinate system Oxyz.

A craze is assumed to have developed horizontally along the x coordinate with

oriented polymer molecule strands acting as prescribed craze boundary stresses

in the z-direction.

Using linear elasticity theory, if the body forces are neglected, the

two-dimensional biharmonic equation

V2 v 2  = , (1)

where $ is a stress function, governs the state of stress of a plane problem

such that the stress components are given by

2 2
a =a 0/Z (2)xx

oY =z 32/ax2 (3)

and a =Z -92 /x3z. (4)
xz
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The mathematical description of this boundary value problem is to find 0

such that Equation 1 i- satisfied, however, subject to the boundary con-

ditions that

= az a x 0 as (x 2 + Z 0) (5)

and cz a k(x)w(x) xl < c (6)

where k(x) is a modulus function, w(x) is the vertical displacement field,

and c is the half length of the craze.

The solution of Equation 1 with the above boundary conditions can be

obtained using the Fourier transform method:
00

W =O - (2/iT) f F(E)cos(Ex)dE,(7
zz x 0

A [4(1-v [F( )/ ]cos(Ex)d , lxi < c (8)

0

and w(x) = 0, Ixl > C (9)

where E = modulus of elasticity of the medium,
v = Poisson's ratio of the medium,

and F( ) satisfies the dual integral equations:

(2/n) F(E)cos( x)d = o= - k(x)w(x), Ix! < c (10)

0

and [F(E)/ ]cos(x)dE = 0, lxI > c (11)

0

Using dimensionless quantities and solving, eventually

j (X) = k(x)w(x), lxI < 1 (12)

and 2 d 1 2 117___ k(_)w(_)
and 1T ()= _2 1/2 +  J (x 2 _ 2 ) 1 2

Z(x-)0 0

>X 1 (13)
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where k(x) and w(x) may be in series form and computer programming can be

employed to obtain the displacement and stress fields once k(x) is given.

The function used for k(x) is of the following form:

x -X X c -Ack(x) = k [f+( l -f) (e -Xe-X2 )/ +e--2)] (14)

where k is a constant modulus of the medium, f is a fraction, and A is a
0

parameter. Thus for X = 3, f = 0.01 the modulus function becomes

k(x) = k [0.010 + 0.491 x 2 + 0.368 x4 + 0.111 X6 + 0.018 X8

+ 0.00178 X I 0 + 0.00012 x 1 2 + ... ] (15)

Figures 2 and 3 respectively show the displacement field and the stress field

for the modulus function given with f = 0, 0.01, 0.1 or 0.S. Dimensionless

quantities were used for plotting the results. w/w is the dimensionless dis-

placement with w0 as the homogeneous displacement of the medium under the

stress o . The dimensionless stress is simply ol o. The quantity A was
00

chosen to be 3. For solid propellant polymer, the following data have been

used: modulus of elasticity E = 94.2 psi, Poisson's ratio v = 0.5, ao = 1 psi

and k = 1000 psi.
0

It is estimated that for a common craze of a brittle polymer, f is likely

to be around 0.5 or less. When actual fracture develops at the center of a

craze, f = 0.

2.1.3 Discussion - The analysis is based upon the theory of elasticity

for small deformations. Therefore, the results are expected to satisfy the

crazing behavior of brittle polymers. For polymeric systems which respond to

load in large deformations, this theory is not likely to hold.

2.2 Prefracture Analysis of Craze in Solid Propellant

2.2.1 Introduction - The phenomenon and study of stress crazing inUpolymeric materials have gained increasing attention and momentum in the
recent years. Different models have been suggested to describe the physical

and chemical properties of a craze. It has been noticed that the molecular

9
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behavior of the partially oriented craze material depends on the stress dis-

tribution on the craze boundary which is interrelated to the displacement

field of the craze boundary. This report attempts to develop a simple

elastic model which can be used to evaluate the craze displacement field

directly from a given stress condition. Using the analogy between the contour

of a craze boundary and a bar bent to the same contour, the problem. can be

reduced to a one-dimensional case. As the craze material deforms under

geometric constraint, the volume increases while the density decreases and

voids and polymer bundles are produced. These oriented polymer bundles behave

like elastic springs, and the spring force, together with the tensile stress

on the bar, and stress at infinity constitute the force equilibrium on the bar.

2.2.2 Model and Formulation of Governing Equation - Consider an

infinite sheet of polymeric material under constant stress a0 applied at

infinity along the z-direction. By placing the cross-section of a craze on

the y-z plane as shown in Figure 4 and considering the force balance of an

infinitesimal element of the bar, which is subjected to surface tension forces

S and S + dS, tensile stress ao , prescribed stress a(x) and bending stiffness

of bar D(x), the displacement field is described by the differential equation

D(x)V V 2w(x) - S(x) V 2w(x) + k(x)w(x) = oo  (16)

where

w(x) = displacement in z-direction,

D(x) = bending stiffness of bar,

S(x) = tensile stress,

and k(x)w(x) = a(x) = prescribed stress due to craze material.

Based on geometry, it has been shown elsewhere that for small displace-

ments, the ratio k(x)/S(x) is constant. And both E(x) and S(x) are properties

of the craze bounday., which is made of partially oriented polymeric material

and proportional tr the degree of orientation. It is reasonable to assume

that S(x)/D(x) is constant. Define

S (X) 2 X2
-W + 2 (17)

12
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k (x) 12 X2D(x) 1 2 (18)

0o  001122

and = k~x) - K(x) (19)

where ' 2 are constants.

The governing equation becomes:

V V 2w(x) - (A1 +X 2 )V 2w(x) + A 2 w(x) = K(x) (20)

By symmetry about the z-axis, it is known that w(x) is an even function.

The bar is considered as a cantilever beam built in at the craze tip.

This allows room for investigation of stress field beyond the craze tip. In

order to be able to obtain solutions in closed form, the following boundary

conditions are employed:

w' (0) = w"(0) = w(c) = w' (c) = 0 (21)

where the primed quantities represent their derivitives with respect to x.

Assume the spring constant of the polymer bundles k(x) varies exponentially

with x and
Ax -Ax

k(x) = kO  [f + (I - f)(e + e-c (22)
e +e -2

where

A is a constant,

k is the modulus of elasticity of the bulk material,0

and f is a fraction which accounts for the decrease of density of craze

material as it deforms.

2.2.3 Solution - General solution of the governing differential

equation is

14



W(X) =c ex + c2 e- 1 x+ c3 eX2x + c 4 eX2x

x
+ I j(x - E) K( ) dE (23)

0

where

J~x [A2 (e xix - e-X) -A(ex2x- e-2x (24
2X 1Ax2 (A1 x A2

2
(4

Define

F(y, x) f Ac -Ac eYX A -AE dE, (25)
0 f(e + e )-2 + (1 -f)(e + e

then the solution can be written as,

w(x) = c 1e A + c 2 e-XX + C 3eA2x + c 4 eA2x

A x A2 %(e Xc+ e-X - 2)

2k0 (A 1 2- 22

X[A2 F(A
1

,lx) - A2 F(-A1 1 x) - A 1 F(A 2 PX) + A 1 F(-A 2 1 x)] (26)

Apply boundary conditions, and solve

Y2 A 2  a0,(e Xc+ e-X - 2)
c c2 - k( 2  2 {A A -(Al+A 2)c - eAA2c

+ ( 1 +A 2 )[e-(A I-A2 ce(Al-\2)c]}

*([(A 1  x A2)F(A1 1 lc) + ( 1 + x 2)F(-XAvc) 2X IAF(-XA2 ,c)]eA2c

+ [(A 1 + A 2 )F(A1,c) + (A1I - I 2)F(-A 1 1 c) - 2A 1F(A 2 Pc)]eAX2cl

(27)

is



2~a (e Ac+ e -c-2)

C3  C4  1 2 0
3 4 2k 0 (X 1 -A 22 MxA1-x2 )[e- (Aj+A2)c -e(TXT-

+ (A 1 + A 2 )fe (Al A2)c - e (X1A2) cf

{K2 - A F( 2 C) + (A1i + x 2)F(-X 2 ;c) 2X 2F(-X2 1 c)]e x1c

+[(A 1 + x 2)F(X 2 'C) + (X - x 1)F(-X 2 Fc) - 2X 2 F(X 1 ,c)]el1C.

'28)

xv 1 X~2 ca0 (e Ac+e-X - 2)

{A 2 F(Alfx) - F(-A1 ,.X)) X I [F(X 2 1 X) - F(- 2 v x)]

+ A 2 (exiX + eAX)x Xe2c(AAx2)F(AiC)

+ X1 X2)F(-Aic) - 2XA F(-X ~

2X 1 +( 21 1 CH)

-Ai
+~~ ~ A ( I + 2)F(A1 1  C) + (A1  2 A91F(-A1 2C) ( 9

2 21 F(A2,c)I
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2.2.4 Results and Discussion - Based upon the model and solution described

above, a number of displacement fields and stress distributions for different

parameters X, X X 2 have been obtained numerically and plotted as shown in

Figures 5 and 6. In these plots, X was taken to be 3 while X and X2 are 2

and 3 respectively. This simplified one-dimezisional analysis shows quantita-

tive similarity with results obtained from a two-dimensional analysis. This

encourages further investigation of the stress distribution at and beyond the

craze tip where the two-dimensional analysis indicates a similarity. By

properly selecting the boundary conditions, solutions in closed form have

been obtained. The singular condition will be considered by application of

other mathematical techniques.

2.3 Prefracture Analysis of a Viscoelastic Craze in Solid Propellant

Polymer

2.3.1 Introduction - Although crazing does not initially affect the

polymer's load-carrying capacity, the propagation of crazes causes further

deformation and eventually fracture. The mechanism of inception of crazing,

propagation of crazes, nucleation of cracking and local stress distribution

indicate that viscoelastic properties of the craze medium, as well as the

bulk medium, play an important role in a complete analysis of the problem.

An elastic model has been developed and reported in an earlier section of

this report, and it is the object of this section to extend the result to thQ

viscoelastic regime using linear viscoelastic models. It is obvious that

the craze medium and the bulk medium undergo deformation at different rates,

and they have different viscoelastic properties due to a difference in the

degree of molecular orientation.

2.3.2 Elastic Model - Consider an infinite sheet of polymeric material

under constant stress a applied at infinity. This can be reduced to a one-0

dimensional problem when attention is confined to the craze boundary which is

simulated by a bar bent to the same contour. The solution of the displacement

field is

17
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12o(e C+ e-XC-2)
w(x) . F(X)F(_ ,x--XI [F(2,x) -FC-X)

2 2 X 1 2 2 x)
0k(1  2

+ A2 
(e A x+ e AIx) (e 2 c[XIX -X 2)F

(X1 c)+(X1+X2)F
(-XIjc)-2X1 F (-

2 c)
]

+ e 2 C(X I+x2 )FCX lc)+(XCx 2)F(-X c)-2X F(X c)

2 e2 1 [( 1X)F(XC)+( I+X )F(-X C)-2X F(-X2 ,C)]+ (e + e 2' e [( 1) 2P 1 2 2' 21 '

+e [ (X I+X 2)M x29 C)+(X2- x 1)F(-X 29c)-2X 2 F(AlC)]

(30)

where X1, x2, 
X, c are constants as reported earlier.

2.3.3 Viscoelastic Model - In the above solution of displacement field

of the craze boundary, the quantities which are time dependent are applied

stress, 1 (t), modulus function of bulk medium, ko(t), and the function f(t)

which appears under function F(y,x,t).

So the time dependent displacement field is

x11x 2 a0(t) [e1C + e- AC-2] {

w(x,'t) = 2 2o t)( 2 )  . 2 [F( lx,t)-F(-XlXt) -xI[F(A 2,xt)-F(- 2,X,t)]

+ (e Al ) + e 1 2 [(A-A2)F(A1,9c,t)+(+I+X2)F(-Xc,t)-2IF(-X2,ct)]

+ C 2+ 2 i'
F e 1 2X -X) F , c t)]

+l(e x2 +e - x 2 X )  e XlC[(x 2_x1)F(X 2v, 0t+0(11+X2 )F(_ 29,c, t)-2 2 F(-Al,9 C' t)]

+ ex1 C [CX1+X2 )F(A2 ,,t)+(x 2-A1 )F(-X 2,c, t)-2A 2F(lC, t)])

(31)

By Laplace transformation, the displacement field in the Laplace domain is

20



xA 1A os( c e-Xc- 2)-
7(XlS) 2) 22o(s) (e +e -2) 2[ x, s) -F(-Ax, s)) -x[ F(A29 x, s)-F(-, x, s)

2ko(S 2) (AX2_x 21

1 2 X
+ lX+  -AlX _ _

2 (e e 1 C 2) F(_X2 ,cs)]

+) e( A2 x2 ) -2. IC 12
! + (A1 +A 2)F(Ale,. +(AlA 2 )F(-A2 ,s )-2- 1 FC 2 ,c,s)] i

+ (e2+ e e2) e I( 2 )( 2 ,)+(Al+ A x,c,s)-2c 2 (-Xl c ' s )]

- [ (,[ +A2)'I"e,' ,q )+(0 2 -A 1)F(-A2, c, s)-22(X 1 ,c~ s (32)

4- e 1 2(322X) cs

where F(y,x,s) = ( d, (33)f ((s)(es)](e + e-
0

where k (t) is the modulus of the bulk medium, i.e., before a craze is developed

in it. Dividing the modulus of elasticity E(x,t) of the bulk medium by a

characteristic length, say h, gives the spring constant or elastic foundation
constant ko. Before a craze initiates, the displacement w° of an imaginary

plane under uniform stress a is given by

C° 0(34)
W0 =k

0

where ko(t) = E(x,t)
0h (35)

where h is a constant.

So ko(t) has identical time-dependent properties as E(x,t). Now

k(x,t) = ko W f(t) + (1 _f(t)I e Ac X2 (
0  e + e-c 2  (36)

where k(x,t) is the time dependent modulus function of craze medium.

Physically k(x,t) depends on displacement w(x,t) and the nonlinear visco-

elastic nature of k(x,t) can be predicted. From the above definition of

k(x,t) it is obvious that nonlinear properties come from the function f(t)

which also depends on w(x,t).
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Therefore, it may be concluded that the bulk medium outside craze region is
linearly viscoelastic while the craze medium is nonlinearly viscoelastic.

The stress applied at infinity, a (t), is constant so it can be represented

by a unit step function,

a t) ut) (37)

By Laplace transformation aI
CS) -o (38)

E(x,t) and k (t) are linearly viscoelastic quantities.

By linear viscoelasticity in the Laplace domain

Pvai (s) =QvEii(s) Volume Behavior (39)

Ps .(s) -Q e. .(s) (40)

S Qs ) Shear Behavior

where a ii, C are normal stress and strains,

ij' e'ij are deviatoric stresses and strains,

P v, QV PSI QS are viscoelastic operators in the Laplace domain.

In elasticity

a.. = 3K . (41)

s.. = 2G e.. (42)13 13

where K is bulk modulus and G is shear modulus.

By analogy

-3 K (43)
V

QS 2G. 
(44)

S
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By theory of elasticity

9KG
E =3K + G (45)

So, by the principle of correspondence in the viscoelastic regime,

9 (1 Qv/P ) (_1 Qs/Ps 2"3 (QV/Pv (Qs/Ps

E(x,s) = Q~p+! Q, ~ Q/,+(46)E~~s =Qv/p v  Qs/p s  Qv/P v + Qs/Ps. (6

v 2 s V 2

Taking the Laplace transformation of Equation 35

g(s) E(xs) (47)
o h

Assume that the volume behavior of the bulk medium is elastic and that the shear

behavior is represented by a Maxwell model.

O .. (t) = 3 KBE ii(t)'

(48)

M.(t + 5 a) i
ij ) + k B s t B t e t) , (49)

where subscript B denotes properties of bulk medium.

k and 9 are the spring constant and damping coefficient of the mathematical

model respectively.

By Laplace transformation

(s) = 3KB  Ci(s) ,

S(s) + - sj n B es

ij( Si(S) = B eij, (51)

Qv (s)
so - = T. ) 3K B2 (52)

v 3.2.



Q 1s= Si] (S) B s
3 eSB)

Ps 3 ( 3 (r B I)9

E(s) = -o (qB= 9 KB B (54)B 2
3KB 2 B/k B+  Bs 6A + 6B+1) B

and o(x,t) k(x,t) w(x,t) = k(x,t) h £(x,t) (55)

k(xt) - 1 a(x,t) (S6)
h E(x,t)

For nonlinear viscoelasticity the stress-strain relationship can be obtained by

use of the absolute reaction rate theorem.

For the Maxwell model,

t) = a (t) + (t)inh (t) (57)
R - kT

where subscript c denotes craze medium and kT represents thermoenergy, y is a

material constant and t(t) is a time dependent function.
2.3.4 Result and Solution - By choosing an appropriate model for the non-

linear viscoelastic behavior of the craze medium, k(x,t) can be solved from

Equation 56. Then with an appropriate choice of linear viscoelastic model for the

bulk medium E(x,s) and k (s) are obtained, and k (t) is determined by Laplace

inversion. The result is then substituted into Equation 36, which is solved

for f(t). After f(t) is obtained, f(s) is determined and F(y,x,s) is solved

for from Equation 34. With known a (s), k (s), F(y,x,a) and f(s), w(x,s) can be

solved from Equation 33 and w(x,t) is solved by Laplace inverse transformation.

2.4 Measurement of In-Plane Displacements of Propellant Polymer Craze by

Speckle Technique

It has been known for some time that, in speckle interferometry, in

principle one can magnify the original speckle size and record a magnified

speckle pattern on a photographic negative. This section will describe how it

has been done in the laboratory and will present some results. It will also

point out a few technical details one should pay attention to when using this

technique.
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The authors have been using speckle interferometry to find the displacement

field along the boundary of a craze or a crack. A craze is created in a

propellant polymer specimen. The speckle pattern is formed by illuminating the

craze boundary in the specimen under two different states of applied stress with

a laser beam and using a double exposure technique to record the interference

pattern so formed on a photographic negative. It is desired to measure the dis-

placement fields at as many points as possible, especially near the craze tip

region. Hence it is desirable to obtain an enlarged speckle pattern for a

small region, so that the fringes can be constructed at many different positions

in this small region. Using the well-known relationship:

AL
d = XL (58)

where d = displacement between two applied loads,

X = wavelength of laser,

L = distance between the speckle pattern and the fringe image plane,

M = magnification factor or speckle pattern,

and h = pitch of the fringes,

the displacement field due to applied stress can be obtained.

The photographic system used is illustrated by Figure 7; a schematic diagram

of the system is shown in Figure 8. A microscope is placed along the reflected

beam of the specimen, the image of which goes directly to the camera. NOTE:

every component of the system must be fixed in position and any relative move-

ment between laser source, specimen, microscope and camera will distort the

speckle pattern. All the lenses, specimen, and recording negative are aligned

perpendicular to the laser beam. One essential thing to be noted when a

speckle pattern is recorded is that the photographic negative has to be placed

at the exact position where the interference pattern is formed. Since there

is a slight shift in positions between the plane on which one views the image

in a camera and the actual position of the negative, the image must be adjusted

to an apparent out of focus position when viewed through the camera. This

compensates the shift and will place the negative at the exact position of the

interference pattern. As to the question of how far off-focus should it be,

this has to be answered by experience since it may differ from one photographic

system to another. Exact compensation is especially critical here since a
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microscope is used to magnify the incident beam before it falls on the

recordinp negative. The microscope produces a magnified interference pattern

exactly at the focal length of the eye-piece. Any error in positioning the

negative may cause a large distortion of the speckle pattern.

Figures 9a through 11a are the speckle patterns recorded with the incident

beam magnified by one, three and 10 times for propellant polymer specimen,

respectively. Figures 9b through lb are the corresponding fringes

obtained near the craze tip in the specimen. It is noted that higher magnifi-

cation factor lowers the contrast and distinction of the Young's fringes.

Another disadvantage of this microspeckle method is that the magnitude of

applied stress and strain (between two exposures) is limited since each

speckle pattern covers only a very small region on the specimen. This is

especially important for rubber specimens where large deformation is usually

encountered. However, the magnification factor can be increased, if desired,

by using a microscope of higher resolving power and magnification factor. The

double convex lens placed behind the spatial filter is not necessary if the

laser source is strong enough (the one used here is 0.05 mW He-Ne laser).

The present system has room for improvements.

2.5 Prefracture Behavior of Polymer Systems

2.5.1 Introduction - During the past thirty odd years a great deal of

knowledge has been accumulated on the development of crazing in brittle polymers

in a tensile stress field. Five excellent reviews of craze and fracture in

polymers summarizing a wide variety of experimental observations and physical

models have appeared (1,2,3,4,5). It is generally accepted that glassy polymer

fracture proceeds in the following sequences:

1. R. P. Kambour: J. Polymer Sci. D (Reviews) 7, 1 1973.
2. S. Rabinowitz, P. Beardmore: CRC Critical Reviews 1, 1 1973.
3. W. G. Knauss, Applied Mechanics Reviews 1 1973, 1-T7.
4. H. H. Kausch, Polymer Fracture, Spring-Verlag Berlin Heidelberg New York,

1978.
5. Edward J. Kramer, "Developments in Polymer Fracture -1" ed by E. H. Andrews,

Applied Science Publishers LTD, London, 55, 1979.
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Figure 9a. Specklegram of Propellant Polymer IX

Figure 9b. Fringe pattern near Craze Tip
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Figure lOa. Specklegram of Propellant Polymer 3X

Figure 10b. Fringe Pattern near Craze Tip
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Figure 11a. Specklegram of Propellant Polvmer lOX

I'igure lib. Fringe Pattern near Craze Tip
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Ci) At sites of stress concentrations or defects such as cracks, flaws,

inhomogenities, particle inclusions and environmental softening

zones, crazes nucleate well before fractures;

(ii) With sustained local large straining, a craze continues to grow

and deform internally;

(iii) Eventually cracks develop usually at the central region of indivi-

dual crazes;

(iv) Subsequently, these cracks propagate behind the craze tips by

repeating somewhat similar processes as described above.

Up to now most of the continuum mechanics models used for analyzing

prefracture craze behavior are based upon a generalized Dugale crack with a

plastic zone at each tip (5,6,7). The plastic zone is considered as a region

of craze. Methods in linear fracture mechanics for elastic media have been

employed for analyses. Schapery in a series of papers (8,9,10,11,12) em-

ployed the concept of conservation of work and fracture energy criterion and

generalized Dugdale model for linear viscoelastic materials. All these

considerations are based upon the assumption that the length of the craze

zone (same as the failure zone or plastic zone) is negligible compared with

that of the crack. Thus the craze growth velocity, crack growth initiation

time and its propagation velocity are governed by a crack induced stress

intensity factor.

In prefracture processes of polymeric systems crazing occurs usually

before any cracking. Thus the assumption that the crack length is much

larger than the craze region is no longer adequate. Therefore the applica-

tion of the fracture mechanics method directly in analyzing this complex

occurence is unlikely to be satisfactory. As a result a new approach is

considered. In this report, the above assumption is eliminated from

6. Happel, J. and Brenner, H. Low Reynolds Number Hydrodynamics, Prentice-
Hall International, Hemel-Hempstead, Herts, 395, 1965.
7. Gerberich, W. W. International J. of Fracture, 13, 55 1977.
8. R. A. Schapery. Int. Journal of Fracture, 11, 144, 1975.
9. R. A. Schapery. Int. Journal of Fracture, 11, 369, 1975.
10. R. A. Schapery. Int. Journal of Fracture, 11, 549, 1975.
11. R. A. Schapery. Int. Journal of Fracture, 14, 293, 1975.
12. R. A. Schapery. SIAM - Ams Proceedings 12, 137, 1979.
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consideration. In addition the entire local deformation behavior responsible

for craze-thickening and load-bearing characteristics is taken into account

in formulating a new mathematical model. This is necessary if a better

understanding of the craze mechanism, the transformation of the polymer

matrix into a new phase (craze material with voids) is to be obtained.

Fundamental properties such as the molecular orientation strength of the

polymer and the breakage rate of the molecular bundles should be considered

in a complete endeavor.

Knight (13) and Kramer (5) utilized a Fourier transform method for

crack analysis and introduced either an assumed or measured displacement

field of a craze profile to calculate the stress distribution. Verhuelpen-

Heymans and Bauwens (14) assumed a two-step stress distribution and used

Muskhelishvili's complex variable technique (15) to calculate the displace-

ments of a craze. In these cases the problem has been treated mathematically

as either a first boundary value problem with prescribed traction forces or

the second boundary value problem with prescribed displacements. In both

cases the initial shape of a crack has been considered as its boundary with

singular crack tips. However, in the present analysis, the load-bearing

molecular bundles reduce the singular nature of stress concentration at

craze tips. The new model developed predicts both the displacements and

the stress distribution along the prefracture craze envelope.

2.5.2 Model Analysis - The occurence of crazes in many stressed polymers

is a common phenomenon. According to the current understanding the formation

of an individual craze comes about as a physical transformation in the

deformation processes from an original phase to a new phase with oriented

molecules and voids. Each craze is usually quite similar to any other. This

suggests the possibility of analyzing the vicinity of a single craze by con-

sidering a symmetrical double beam as shown in Figure 12. AABB shows a

quarter section of the augmented double beam containing a thin primordial

13. A. C. Knight. J. Polymer Sci. 3 1845, 1965
14. Verhuelpen-Heymens, N. and J. C. Bauwens, J. Materials Sci. 11 7, 1976
15. N. I. Muskhelishvili, "Some Basic Problems of Mathematical Theory of
Elasticity", Neordhoff, Groningen, The Netherlands, 340, 1953.
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craze layer next to BB which has transformed into the new phase resisting

both the normal and shear deformation. The mathematical equation governing

the vertical displacement w(x) of the center line CC for the uniform beam

AABB of unit thickness is:

EIV2 V 2w - S(x)V 2w + K(x)w 0 (59)

where E is the modulus of elasticity of the beam,

I is the second moment of the cross-section of the beam,

V2 = )2/ax2 is the del operator,

S is the shear foundation modulus,

K is the elongation foundation modulus,

and o° is the applied stress.

With the following boundary conditions:

w'(0) = w'"(0) = w"(2c) = w '(2c) = 0 (60)

where the primed quantities represent their derivitives with respect to the

length of the craze. Equation 59 can be solved by finite difference methods

for any foundation modulus function. That isEquation 59 can be rewritten

as normal first-order system

w'"' = [S(x)w" - K(x)w + ao]/EI, (61)

or in matrix form,

d[W]/dx = [A] [W] + [B] (62)
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where w

[W] w'
W. (63)
W " ,

0 0 0 0

[A] 0 1 0 0 (4

0 0 1 1 (64)

-K (x)0S(x 0

0

[B] = o(65)
0

The boundary condition is

[C] [W] x=0+ [D [W]x2c = (E(
X=O x=2c(66)

where

[C] 0 00001(67)
00 00

00 0 0

[DI = 0 1 ' (68)
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0

0[E] = 0 (69)

0

Equations 62 and 66 together with the given foundation modulus functions

K(x) and S(x) can be solved by the implementation of computer programming

for obtaining the displacement field w(x).

This approach, based upon a simple model, has been checked numerically

for some polymer systems. Results have shown encouraging agreements while

the prefracture problem is extremely complicated. Applications of this

theory to propellant polymers are reported later.

2.5.3 Further Details - Considering that the thickness of the premordial

craze as 2e then the elongation foundation modulus varies as a function of

the development of the new phase. For craze and uncraze regions respectively:

K(x) = E (0 < x < c) (70)
h + e(x) 1) -

where E is the modulus of elasticity in the craze region.c

K(x) 2E (c < x < 2c) (71)
h

If K is the constant elongation modulus, then

K(x) = q(x) K, (0 < x < c) (72)

K(x) = K, (c < x <2c) (73)

where q(x) = [1 + h1)1, (74)
h EC

The shear foundation modulus varies as follows:

S(x) = 0 (0 < X < C) (75)
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S(X) 6 hG (c < x < 2c) (76)

where 6 is a proportional constant and G is the shear modulus of the

uncrazed medium.

2.6 Effect of Ammonium Perchlorate on Prefracture Behavior of Propellant

Polymer

2.6.1 Introduction - The objectives of this work are to develop a

mathematical model which predicts prefracture behavior of solid propellants

under load and to establish whether a definable relationship exists between

craze or microflaw development and subsequent crack propagation in solid

propellants. This effort will contribute to the reliability of missile pro-

pulsion systems by developing a theoretical understanding of the processes

leading to propellant cracking.

Currently a two-dimensional mathematical model has been developed for

analyzing individual crazes using infinitesimal elasticity theory. However,

in order to fit to systems with large deformations a "one-dimensional"

mathematical model has been developed for describing two-dimensional plane

crazes. Based upon the use of "clamped" double cantilever beams the dis-

placement field between the beams has been calculated as a result of applied

stress as well as functions of the modulus of elasticity of the medium,

the thickness of each beam, the magnitude of shear and the variation of the

strength of the oriented polymer as the prescribed boundary conditions of a

craze.

It was found that under a constant tensile stress the displacements of a

craze increase in magnitude as the percentage of ammonium perchlorate in the

propellant polymer increases. The geometrical shapes of the craze were

observed to agree fairly well with the analytical predictions.

2.6.2 Analysis - One-dimensional double augmented beams are used to

simulate the two-dimensional plane craze as shown in Figure 13. A uniform

tensile stress a is applied. At the craze region a new phase of oriented

molecules with voids is developed. They act as prescribed boundary resistance

forces on the surface of craze. For properly describing the craze opening,
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the basic equation determining the deflection of a beam on an elastic

foundation is utilized:

EIV 2V2 w - G6hV 2w + K(x)w = a0 (77)

where E is the modulus of elasticity of the polymer,

I is h 3/12, the second moment of the beam cross-section per unit width,

w is the vertical displacement,

G is shear modulus,

6 is a fraction,

h is the height of each split beam,

and K(x) is the modulus of elasticity of the craze material in the new phase.

By considering a continuous variation of the modulus function k(x), the

application of the calculus of variation reveals that for a beam of 2c in

length where c represents the craze length the modulus function varies as

follows:

Xx -Xx Xc -c
k(x) = k 0f + (1 - f)(e + e - 2)/(e + e - 2)],

(0 < x < c)

k(x) = k (c < x < 2c) (78)
0

where f is a fraction identifying the density of the craze medium,

X is a constant,

and k is the modulus function of the polymer without craze. It is easily0

verified that

k 2E (79)

With the following boundary conditions

w'(O) = w'"(0) = w"(2c) = w"'(2c) = 0, (80)

Equation 77 can be solved by finite-difference method.
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2.6.3 Experimental Results - Assuming that h/ce 0.2, 6 = 0.1, and X 3,

a number of displacement and stress distributions have been obtained for

propellant polymers containing different amounts of ammonium perchlorate

particles.

Specimens having three percentages of ammonium perchlorate have been

tested in a universal testing unit and true stresses and true strains have

been calculated.

Referring to Figure 14 for all the specimens tested, it was found that

the modulus of elasticity for the initial portion of the stress-strain curve

was essentially constant. The propellant polymer was composed of cured HTPB

binder containing small percentages of ultra-fine ammonium perchlorate (AP).

For specimens with 0% AP, E = 142 psi.

For specimens with 2% AP, E = 94.2 psi.

For specimens with 10% AP, E = 75 psi.

The sample specimens were die cut from thin cast sheets with nominal

thickness of about 3/32".

The true stress was determined on the basis that the volume of the

sample specimen was assumed constant throughout the duration of testing.

Thus the load divided by the instantaneous cross-sectional area gives the

true stress value. As for the true strain values, the logarithm of the length

ratios has been calculated. The original gage length chosen was 2". Figure

15 shows the dimensions of a die cut propellant polymer specimen.

In order to see the effect of the percentage of ammonium perchlorate

particles (6p) on the displacements of a craze, Figure 16 shows their

influence under a constant stress of 20 psi.

Figures 17-19 respectively show the displacement field for 0, 2 and 10%

ammonium perchlorate under different stresses as indicated.

For the purpose of observing the influence of the density variation of

the craze medium Figures 20 - 22 respectively show the f quantities as

affected by 0, 2 and 10% ammonium perchlorate under a same stress of 30 psi.

2.6.4 Remarks - Referring to Figure 24 it is seen that there are

numerous small crazes developed on the surface of the propellant polymer

containing 2% ammonium perchlorate. The big craze had been helped to grow
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by slicing with a sharp blade initially. Afterwards the big craze did grow

itself under greater load. It is not known, however, why numerous crazes

developed on this specimen and some others while many others did not show

any tendency of crazing.

The general agreement between theoretical and experimental results is

interesting. It is even more interesting to note that the experimental data

only fit those curves in displacements for f = 0.1. Apparently this indicates

that the craze material at the central section has reduced to only one tenth

of that of the original polymer composites.

As for the stress distribution as affected by different fractional strengths

at the central section of the craze, Figure 23 shows the general trend pre-

dicted according to the present model.

An actual photomicrograph was taken of a craze as shown in Figure 24.

The craze was developed at a = 18.2 psi for a specimen containing 2%0

ammonium perchlorate. A comparison of theoretical and experimental results

is shown in Figure 25. The circles are measured points which agree very

well with the theoretical curve with f + 0.1. Under a greater stress, i.e.

= 57.7 psi the displacement field follows the same curve for f = 0.1 as

shown in Figure 26.*

4 !2.7 Fracture Initiation and Propagation in Craze Developed in Filled

Elastomers

i 2.7.1 Introduction and Method of Approach - The time-dependent mechanical

behavior of highly filled elastomers has received extensive study because of

their use as rocket propellants. The filler is typically an inorganic powder

with particle diameters within the range of 1 - 200 p. Filler concentrations

as high as 75 - 88% by weight are usually employed. The response of such a

* It should be noted here that the flaw depicted in Figure 24 was asymmetrical.

The left side of the flaw (i.e. the part not shown in Figure 24) is approxi-

mately the length of the side used in the comparison shown in Figure 25. The

maximum opening is (of course) the same for both sides of the flaw in terms of

absolute dimensions (Comment added by Air Force Project Manager).
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material to an imposed stress quite often differs substantially from that of

the unfilled elastomer as a consequence of both the reinforcing ( or perhaps

weakening) action of the filler particle and the surface interactions between

the filler and the polymer. For example, the effects of ammonium perchlorate

on the stress-strain response and some typical physical properties are shown

in Figure 27 and Table 1. These results show that an increase in the percent-

age of ammonium perchlorate decreases the modulus of elasticity instead of

reinforcing it.

One of the most serious and still unresolved problems in high filled

solid propellant is the fracture and prefracture behavior of such a polymeric

system under load. Why and when do the actual cracks initiate and propagate?

In this report a fracture initiation and propagation mechanism for such

polymer system is suggested:

In the neighborhood of particle surfaces, voids initiate due to the

breakage of bonds between the filler and the elastomer. They initiate pre-

ferentially near large particles or at sites having imperfect bonding.

The breaking of bonds between the filler and the matrix weakens or

softens the material such that a localized large strain is generated.

The localized large strains continue to extend until the ultimate strength

of the medium is reached.

Finally, the fibrils (rubbery binder) which connect the bulk polymer

matrix break down and true fracture initiates.

IL appears that the craze fibril bundles play an important role in

fracture initiation and propagation. As a result both the nonlinear

characteristics of the craze fibrils and their orientation seem to dominate

the time dependent mechanical behavior.

Based on these mechanisms, a one-dimensional augmented double beam model

(16) together with the reaction rate theory is employed to analyze the time

dependent displacement and stress distribution along a craze profile. Figure

28 shows the schematic disgram of the model. A series of springs which

connect between two beams are used to represent the craze fibril bundles.

Two time dependent quantites f(t) and X(t) are used to measure rupture and

16. S. S. Chern and C. C. Hsiao, "Prefracture Behavior of Polymer Systems",
Section 2.5 in this report (1980).
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the orientation of the molecular bonds respectively. The variation of the

ratio of the foundation moduli - that is the modulus with craze present over

that without:

X(t)z -A(t~

q[z,f(t),X(t),c(t)] = f(t) + (1 - f(t) eA(t)C + e A(t) 2 (81)
e XCt)c(t) + e- At) c(t) _2

where f(t) is the fraction of unbroken molecular bonds per unit length at the

central position of the craze. It is evident that 0 < f(t) < 1,

X(t) is a quantity which measures the nonlinearity of the foundation

modulus as a result of the orientation of the molecules,

and c(t) is the time dependent craze length measured from the center of a

craze. Figure 29 shows several curves on the variation of the

foundation modulus q versus the dimensionless craze length c(t) = 1,

with f(t) = 0.5, and A(t) = 1, 5, 10, 20, 30, 50.

In general, an excellent approach in obtaining the time dependent

behavior has been the use of the statistical theory of the absolute reaction

rate (17,18,19) for a system of oriented polymeric molecular elements.

Broken elements represent the breakage of molecular bonds under the influence

of applied load. This modeling for studying the behavior of craze fibril

bundles seems quite adequate as they are oriented molecules. Now let g(t)

be the fraction of unbroken elements per unit volume at the central position

x = 0 of the craze (that is, f(t) = gl/3(t)) then the rate of change of g is

given as follows:

= K (1 - g) - Kg (82)

where

K = Wr exp [-U/RT (83)

Kb = wb exp [U/RT + 8i(t)]. (84)

17. C. C. Hsiao, "Theory of Mechanical Breakdown and Molecular Orientation
of a Model Linear High Polymer Solid", J. Appl. Phys., Vol. 30, p. 1492 (1959).
18. C. C. Hsiao, S. R. Moghe and H. H. Kausch von Schmeling, "Time-Dependent
Mechanical Strength of Oriented Media", J. Appl. Phys., Vol. 39, 3857 (1968).
19. C. C. Hsiao, "Fracture", Physics Today, Vol 19, 44 (1966).
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Kr and K are the rate of reformation of broken elements and that of the

unbroken elements respectively. w r and wb are respectively the frequencies

of the jump condition of the elements with respect to the forming and

breaking processes,

U is the activation energy,

R is the universal gas constant,

T is the absolute temperature,

Y and are positive quantities,

*(t) is the force per average molecular cross-section in its axial

direction.

For moderately large loads (eq. critical crazing load) the influence of

reformation can be neglected, that is:

Kr = 0. (85)

For a uniaxial tension a0, P(t) is equal to a . Hence Kb is the only

material constant left which will govern the function g(t) during rupturing

processes. The solution of Equation 82 together with the initial condition

that

g(O) = go# (86)

is

g(t) = go exp(-Kbt). (87)

The value Kb can be determined from experimental creep data under constant

loads. It can be shown that and the term wb exp(U/RT) are respectively the

slope and the intercept of curves plotted with a log of time-to-break versus

load.

During the prefracture process, it is reasonable to assume that the craze

tip growth mechanism is dominated by steady-state creep. According to a

general Arrhenius-type equation, the steady-state craze tip growth velocity

can be written as:
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V = v 0 exp(-AG/RT) (88)

where the quantity v0 can be thought of as the maximum attainable craze

velocity and AG as the free enthalpy of activation to overcome one "obstacle".

Hence, the time dependent craze length can usually be represented either by

c(t) = co+ c1 ln(t + 1) (89)

for the initial stage in creep, or

c(t) = c + tv exp(-AG/RT) (90)0 0

for the steady-state creep where c0 is the initial flaw size from which a

craze may develop and c1 is a constant.

Combining Equations 81, 87 and 89 and some suitably chosen function

A(t), the fraction of foundation modulus can be expressed as a time dependent

function.

Using this q(t) together with the governing equation and proper boundary

condition (Equations 87 and 89) both the time-dependent displacement and

stress along the craze profile can be solved.

2.7.2 Stability Criterion of Fracture Initiation and Propagation - A
*

catastrophic failure in a growing craze will occur once critical conditions

are reached. Instead of using energy release rate or crack opening dis-

placement (COD) as a critical criterion for crack propagation studies, a

volume fraction criterion is proposed:

Let wcrack(x) be the displacement field of an elliptical crack in a two-

dimensional infinite plane sheet (20).

E c 2(t) - xWcrack (x) = E

where v is the Poisson's ratio of bulk polymer and E is its modulus of elasticity.

* Catastrophic failure refers to a sudden breakdown of craze fibrils.

20. I. N. Sneddon, Fourier Transform, McGraw-Hill, New York, 426 (1951).
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Define Vcraze and Vcrack as the volumes enclosed by either the craze and

crack profile, respectively, that is:

c(t)
V (t) = 4 b f w (x.t) dx (92)
craze 0 craze dx,

C(t) 27r(I-v 2 b c 2  W (93)
Vcrack(t) = 4be f W c x) dx 0 0o (t

0 crack E

Let G(t) = Vcraze(t)/Vcrack (t) 
(94)

Assume that a critical value G exists such that when
c

G < G craze is stable
c

G > G : craze fibrils break down catastrophically

The time tc such that G(t c) = Gc is called the fracture initiation time,

at which a crack commences and propagates within the craze.

2.7.3 Results - Based upon these ideas, a nimnber of time dependent

behaviors have been calculated and plotted.

Under uniaxial tension 0 = 7.5 psi for 10% amnmonium perchlorate0

(E° = 75 psi) with initial flaw size c0 = 0.2 num and initial fraction of

unbroken bonds go = 0.9, each elapsed time is considered to be of 5, 10, 20,

30, 40 or 50 minutes, and the other data used are Kb = 0.1, A(t) = 3,

c(t) = 0.2 + 0.2 ln(l + t), several plots are given:

Figure 30 shows the time dependent craze displacements.

Figure 31 shows the corresponding time dependent stress distributions

along the craze boundary.

Figure 32 shows the corresponding time dependent volume fraction G(t).

Furthermore Figure 33 shows the dependence of the volume fraction G(t)

on Kb and c(t).

Similarly with all the quantities the same as given before except that

c(t) is chosen to be 0.2 + 0.02 t, several more illustrations are obtained:

Figures 34 - 36 show plots similar to those of Figures 30 - 32.

In addition Figure 37 shows the dependence of the volume fraction G(t) on
K1 and c(t).
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2.7.4 Remarks - Unlike fracture mechanics, where energy release rate is

widely used as a fracture criterion, the load-bearing capability of craze

fibril bundles makes it difficult to express energy release rate as function

of craze tip growth only. In fact, the energy release rate is not only a

function of time but also functions of craze length, fibrous strength and

breaking rate of fibrils. In this report, the reaction rate theory is

employed to calculate the breaking rate of fibrils and the time dependent

nonlinear behavior of the foundation modulus. Then an augmented double beam

model is used to find the displacement of craze profile and load-bearing

capacity of craze fibrils. Finally, a volume fraction is proposed as an

instability criterion of the whole craze-crack transition. The results show

that the instability behavior of craze is dominated by the breaking rate of

craze fibrils instead of the growing velocity of the craze tip.

4. FINAL REMARKS

The complex problem of prefracture of propellant polymer has been

successfully tackled. Several possible theoretical developments have been

made. Some experimental evidences in support of the mathematical modelings

have been found. A new laser speckle interferometric technique for

measuring in-plane displacement fields has been successfully developed. This

together with the augmented double beam model for craze stress analyses has

paved the way to study crazing in solid propellant polymer systems. The

basic theory has also been extended to cover a possible investigation on the

fracture initiation of propellant polymers. These theories and methods can

be tested once proper data associated with propellant polymers become

available.
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